初二數學知識點全總結全等三角形一、定義1、全等形:形狀大小相同,能完全重合的兩個圖形、2、全等三角形:能夠完全重合的兩個三角形、二、重點1、平移,翻折,旋轉下面是小編為大家整理的初二數學知識點全總結5篇,供大家參考。
初二數學知識點全總結篇1
全等三角形
一、定義
1、全等形:形狀大小相同,能完全重合的兩個圖形、
2、全等三角形:能夠完全重合的兩個三角形、
二、重點
1、平移,翻折,旋轉前后的圖形全等、
2、全等三角形的性質:全等三角形的對應邊相等,全等三角形的對應角相等、
3、全等三角形的判定:
SSS三邊對應相等的兩個三角形全等[邊邊邊]
SAS兩邊和它們的夾角對應相等的兩個三角形全等[邊角邊]
ASA兩角和它們的夾邊對應相等的兩個三角形全等[角邊角]
AAS兩個角和其中一個角的對邊開業相等的兩個三角形全等[邊角邊]
HL斜邊和一條直角邊對應相等的兩個三角形全等[斜邊,直角邊]
4、角平分線的性質:角的平分線上的點到角的兩邊的距離相等、
5、角平分線的判定:角的內部到角的兩邊的距離相等的點在角的平分線上、
不等關系
1、 一般地,用符號“<”(或“≤”),>”(或“≥”)連接的式子叫做不等式、
2、 區別方程與不等式:方程表示是相等的關系,不等式表示是不相等的關系。
3、 準確“翻譯”不等式,正確理解“非負數”、“不小于”等數學術語、
非負數 <===> 大于等于0(≥0) <===> 0和正數 <===> 不小于0
非正數 <===> 小于等于0(≤0) <===> 0和負數 <===> 不大于0
不等式的基本性質
1、 掌握不等式的基本性質,并會靈活運用:
(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那么a+c>b+c, a-c>b-c、
(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,并且c>0,那么ac>bc,
(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:如果a>b,并且c<0,那么ac
2、 比較大小:(a、b分別表示兩個實數或整式) 一般地:
如果a>b,那么a-b是正數;反過來,如果a-b是正數,那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a那么a-b是負數;反過來,如果a-b是正數,那么a
即:a>b <===> a-b>0 a=b <===> a-b=0 a<===> a-b<0
初二數學知識點全總結篇2
等腰三角形:有兩條邊相等的三角形叫等腰三角形、
相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。
等腰三角形性質:
(1)具有一般三角形的邊角關系
(2)等邊對等角;
(3)底邊上的高、底邊上的中線、頂角平分線互相重合;
(4)是軸對稱圖形,對稱軸是頂角平分線;
(5)底邊小于腰長的兩倍并且大于零,腰長大于底邊的一半;
(6)頂角等于180°減去底角的兩倍;
(7)頂角可以是銳角、直角、鈍角,而底角只能是銳角、
等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形、
等邊三角形性質:
①具備等腰三角形的一切性質。
②等邊三角形三條邊都相等,三個內角都相等并且每個都是60°。
5、 等腰三角形的判定:
①利用定義;
②等角對等邊;
等邊三角形的判定:
①利用定義:三邊相等的三角形是等邊三角形
②有一個角是60°的等腰三角形是等邊三角形、
含30°銳角的直角三角形邊角關系:在直角三角形中,30°銳角所對的直角邊等于斜邊的一半。
三角形邊角的不等關系;長邊對大角,短邊對小角;大角對長邊,小角對短邊。
初二數學知識點全總結篇3
1、函數概念:在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說x是自變量,y是x的函數、
2、一次函數和正比例函數的概念
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變量),特別地,當b=0時,稱y是x的正比例函數、
說明:
(1)一次函數的自變量的取值范圍是一切實數,但在實際問題中要根據函數的實際意義來確定、
(2)一次函數y=kx+b(k,b為常數,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意義相同,即自變量x的次數為1,一次項系數k必須是不為零的常數,b可為任意常數、
(3)當b=0,k≠0時,y=b仍是一次函數、
(4)當b=0,k=0時,它不是一次函數、
3、一次函數的圖象(三步畫圖象)
由于一次函數y=kx+b(k,b為常數,k≠0)的圖象是一條直線,所以一次函數y=kx+b的圖象也稱為直線y=kx+b、
由于兩點確定一條直線,因此在今后作一次函數圖象時,只要描出適合關系式的兩點,再連成直線即可,一般選取兩個特殊點:直線與y軸的交點(0,b),直線與x軸的交點(-,0)、但也不必一定選取這兩個特殊點、畫正比例函數y=kx的圖象時,只要描出點(0,0),(1,k)即可、
4、一次函數y=kx+b(k,b為常數,k≠0)的性質(正比例函數的性質略)
(1)k的正負決定直線的傾斜方向;①k>0時,y的值隨x值的增大而增大;
②k﹤O時,y的值隨x值的增大而減小、
(2)|k|大小決定直線的。傾斜程度,即|k|越大,直線與x軸相交的銳角度數越大(直線陡),|k|越小,直線與x軸相交的銳角度數越小(直線緩);
(3)b的正、負決定直線與y軸交點的位置;
①當b>0時,直線與y軸交于正半軸上;
②當b<0時,直線與y軸交于負半軸上;
③當b=0時,直線經過原點,是正比例函數、
(4)由于k,b的符號不同,直線所經過的象限也不同;
5、確定正比例函數及一次函數表達式的條件
(1)由于正比例函數y=kx(k≠0)中只有一個待定系數k,故只需一個條件(如一對x,y的值或一個點)就可求得k的值、
(2)由于一次函數y=kx+b(k≠0)中有兩個待定系數k,b,需要兩個獨立的條件確定兩個關于k,b的方程,求得k,b的值,這兩個條件通常是兩個點或兩對x,y的值、
6、待定系數法
先設待求函數關系式(其中含有未知常數系數),再根據條件列出方程(或方程組),求出未知系數,從而得到所求結果的方法,叫做待定系數法、其中未知系數也叫待定系數、例如:函數y=kx+b中,k,b就是待定系數、
7、用待定系數法確定一次函數表達式的一般步驟
(1)設函數表達式為y=kx+b;
(2)將已知點的坐標代入函數表達式,解方程(組);
(3)求出k與b的值,得到函數表達式、
8、本章思想方法
(1)函數方法。函數方法就是用運動、變化的觀點來分析題中的數量關系,函數的實質是研究兩個變量之間的對應關系。
(2)數形結合法。數形結合法是指將數與形結合,分析、研究、解決問題的一種思想方法。
初二數學知識點全總結篇4
一
1全等三角形的對應邊、對應角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
11推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
12等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13推論3等邊三角形的各角都相等,并且每一個角都等于60°
14等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15推論1三個角都相等的三角形是等邊三角形
16推論2有一個角等于60°的等腰三角形是等邊三角形
17在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18直角三角形斜邊上的中線等于斜邊上的一半
19定理線段垂直平分線上的點和這條線段兩個端點的距離相等
20逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22定理1關于某條直線對稱的兩個圖形是全等形
23定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
24定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
25逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
26勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
27勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
28定理四邊形的內角和等于360°
29四邊形的外角和等于360°
30多邊形內角和定理n邊形的內角的和等于(n-2)×180°
31推論任意多邊的外角和等于360°
32平行四邊形性質定理1平行四邊形的對角相等
33平行四邊形性質定理2平行四邊形的對邊相等
34推論夾在兩條平行線間的平行線段相等
35平行四邊形性質定理3平行四邊形的對角線互相平分
36平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
37平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
38平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
39平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
40矩形性質定理1矩形的四個角都是直角
41矩形性質定理2矩形的對角線相等
42矩形判定定理1有三個角是直角的四邊形是矩形
43矩形判定定理2對角線相等的平行四邊形是矩形
44菱形性質定理1菱形的四條邊都相等
45菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
46菱形面積=對角線乘積的一半,即S=(a×b)÷2
47菱形判定定理1四邊都相等的四邊形是菱形
48菱形判定定理2對角線互相垂直的平行四邊形是菱形
49正方形性質定理1正方形的四個角都是直角,四條邊都相等
50正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
51定理1關于中心對稱的兩個圖形是全等的
52定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
53逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
54等腰梯形性質定理等腰梯形在同一底上的兩個角相等
55等腰梯形的兩條對角線相等
56等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
57對角線相等的梯形是等腰梯形
58平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
59推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
60推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
61三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
62梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h
二
一、軸對稱圖形
1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。
2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點
3、軸對稱圖形和軸對稱的區別與聯系
4、軸對稱的性質
①關于某直線對稱的兩個圖形是全等形。
②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。
二、線段的垂直平分線
1、經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。
2、線段垂直平分線上的點與這條線段的兩個端點的距離相等
3、與一條線段兩個端點距離相等的點,在線段的垂直平分線上
三、用坐標表示軸對稱小結:
1、在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數。關于y軸對稱的點橫坐標互為相反數,縱坐標相等。
2、三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等
四、(等腰三角形)知識點回顧
1、等腰三角形的性質
①。等腰三角形的兩個底角相等。(等邊對等角)
②。等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)
2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)
五、(等邊三角形)知識點回顧
1、等邊三角形的性質:等邊三角形的三個角都相等,并且每一個角都等于600。
2、等邊三角形的判定:
①三個角都相等的三角形是等邊三角形。
②有一個角是600的等腰三角形是等邊三角形。
3、在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。
①、等腰三角形的性質
定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)
推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。
推論2:等邊三角形的各個角都相等,并且每個角都等于60°。
②、等腰三角形的其他性質:
(1)等腰直角三角形的兩個底角相等且等于45°
(2)等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。
(3)等腰三角形的三邊關系:設腰長為a,底邊長為b,則
(4)等腰三角形的三角關系:設頂角為頂角為∠A,底角為∠B、∠C,則∠A=180°—2∠B,∠B=∠C=
③、等腰三角形的判定
等腰三角形的判定定理及推論:
定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。
推論1:三個角都相等的三角形是等邊三角形
推論2:有一個角是60°的等腰三角形是等邊三角形。
推論3:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。
④、三角形中的中位線
連接三角形兩邊中點的線段叫做三角形的中位線。
(1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。
(2)要會區別三角形中線與中位線。
三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。
三角形中位線定理的作用:
位置關系:可以證明兩條直線平行。
數量關系:可以證明線段的倍分關系。
常用結論:任一個三角形都有三條中位線,由此有:
結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結論2:三條中位線將原三角形分割成四個全等的三角形。
結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結論4:三角形一條中線和與它相交的中位線互相平分。
結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
三
1、提公共因式法
※1.如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。這種分解因式的方法叫做提公因式法。
如:
※2.概念內涵:
(1)因式分解的最后結果應當是“積”;
(2)公因式可能是單項式,也可能是多項式;
(3)提公因式法的理論依據是乘法對加法的分配律,即:
※3.易錯點點評:
(1)注意項的符號與冪指數是否搞錯;
(2)公因式是否提“干凈”;
(3)多項式中某一項恰為公因式,提出后,括號中這一項為+1,不漏掉。
2、運用公式法
※1.如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
※2.主要公式:
(1)平方差公式:
(2)完全平方公式:
¤3.易錯點點評:
因式分解要分解到底。如就沒有分解到底。
※4.運用公式法:
(1)平方差公式:
①應是二項式或視作二項式的多項式;
②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;
③二項是異號。
(2)完全平方公式:
①應是三項式;
②其中兩項同號,且各為一整式的平方;
③還有一項可正負,且它是前兩項冪的底數乘積的2倍。
3、因式分解的思路與解題步驟:
(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最后結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止。
4、分組分解法:
※1.分組分解法:利用分組來分解因式的方法叫做分組分解法。
如:
※2.概念內涵:
分組分解法的關鍵是如何分組,要嘗試通過分組后是否有公因式可提,并且可繼續分解,分組后是否可利用公式法繼續分解因式。
※3.注意:分組時要注意符號的變化。
5、十字相乘法:
※1.對于二次三項式,將a和c分別分解成兩個因數的乘積,且滿足,往往寫成的形式,將二次三項式進行分解。
如:
※2.二次三項式的分解:
※3.規律內涵:
(1)理解:把分解因式時,如果常數項q是正數,那么把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同。
(2)如果常數項q是負數,那么把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對于分解的兩個因數,還要看它們的和是不是等于一次項系數p.
※4.易錯點點評:
(1)十字相乘法在對系數分解時易出錯;
(2)分解的結果與原式不等,這時通常采用多項式乘法還原后檢驗分解的是否正確。
八年級數學學習方法
1、做好準備,提出問題,多次閱讀課本,查閱相關材料,回答自己提出的問題,并在老師談論新課之前努力掌握盡可能多的知識。如果你不能回答問題,你可以在老師的講座中解答。
2。學會聽課。在初中教學中,教師經常反復講解一個知識點,讓學生通過大量的練習掌握它。但是高中畢業后,老師不會讓學生通過大量的練習掌握知識點,而是通過一些相關的知識來引導學生去理解。這些知識是如何產生的,以及如何利用這些知識來解決一些相關的疑問?如果學生能夠理解,他們可以通過課外練習鞏固自己的知識。同時,學生可以根據教師的指導擴大知識。
初二數學知識點全總結篇5
1、實數的概念及分類
①實數的"分類
②無理數
無限不循環小數叫做無理數。
在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:
開方開不盡的數,如 √7 ,3 √2等;
有特定意義的數,如圓周率π,或化簡后含有π的數,如π /?+8等;
有特定結構的數,如0.1010010001…等;
某些三角函數值,如sin60°等
2、實數的倒數、相反數和絕對值
①相反數
實數與它的相反數是一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。
②絕對值
在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
③倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。0沒有倒數。
④數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。
⑤估算
3、平方根、算數平方根和立方根
①算術平方根
一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。
性質:正數和零的算術平方根都只有一個,0的算術平方根是0。
②平方根
一般地,如果一個數x的平方等于a,即x2=a,那么這個數x就叫做a的平方根(或二次方根)。
性質:一個正數有兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根。
開平方求一個數a的平方根的運算,叫做開平方。注意 √a的雙重非負性:√a≥0 ; a≥0
③立方根
一般地,如果一個數x的立方等于a,即x3=a,那么這個數x就叫做a 的立方根(或三次方根)。
表示方法:記作 3 √a
性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。
注意:- 3 √a=3 √-a,這說明三次根號內的負號可以移到根號外面。
4、實數大小的比較
①實數比較大小
正數大于零,負數小于零,正數大于一切負數;
數軸上的兩個點所表示的數,右邊的總比左邊的大;
兩個負數,絕對值大的反而小。
②實數大小比較的幾種常用方法
數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。
求差比較:設a、b是實數 a-b>0a>b; a-b=0a=b; a-b<0a
絕對值比較法:設a、b是兩負實數,則∣a∣>∣b∣a
平方法:設a、b是兩負實數,則 a2>b2a
①含有二次根號“ √ ”;被開方數a必須是非負數。
②性質:
③運算結果若含有“ √ ”形式,必須滿足:
被開方數的因數是整數,因式是整式
被開方數中不含能開得盡方的因數或因式
6、實數的運算
①六種運算:加、減、乘、除、乘方 、開方。
②實數的運算順序
先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
③運算律
加法交換律 a+b= b+a
加法結合律 (a+b)+c= a+( b+c )
乘法交換律 ab= ba
乘法結合律 (ab)c = a( bc )
乘法對加法的分配律 a( b+c )=ab+ac
推薦訪問:知識點 數學 初二數學知識點全總結人教版 初二數學知識點全總結精選 初二數學知識點總結歸納 初二數學知識點總結歸納(完整版) 初二數學知識點總結歸納下冊 初二數學知識點總結及公式大全 初二數學知識點總結人教版 初二數學知識點總結思維導圖 初二數學知識點總結上冊 初二數學知識點總結大全