精品久久久无码人妻字幂_综合久久综合久久_a级亚洲片精品久久久久久久_成年黄页网站大全免费无码,亚洲欧美日韩成人一区在线,成人免费在线观看视频,亚洲欧洲日本国产

當前位置:首頁 > 專題范文 > 公文范文 >

2023年度高中數學必修5知識點6篇(完整)

時間:2023-07-25 16:40:02 來源:網友投稿

高中數學必修5知識點1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:(1)直接法:亦稱觀察法,對下面是小編為大家整理的高中數學必修5知識點6篇,供大家參考。

高中數學必修5知識點6篇

高中數學必修5知識點篇1

1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。

(3)反函數法:利用函數f(x)與其反函數f-1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

如函數的值域是(0,16],值是16,無最小值。再如函數的值域是(-∞,-2]∪[2,+∞),但此函數無值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2.可見定義域對函數的值域或最值的影響。

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

高中數學必修5知識點篇2

集合與函數概念

一、集合有關概念

1、集合的含義

2、集合的中元素的三個特性:

(1)元素的確定性如:世界上最高的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法

非負整數集(即自然數集)記作:N

正整數集:N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合

二、集合間的基本關系

1、“包含”關系—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關系:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4、子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集并集補集

定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:AB(讀作‘A并B’),即AB={x|xA,或xB})。

基本初等函數

一、指數函數

(一)指數與指數冪的運算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈自然數集。

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand)。

當是偶數時,正數的次方根有兩個,這兩個數互為相反數。此時,正數的正的次方根用符號表示,負的次方根用符號-表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2、分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等于0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪。

3、實數指數冪的運算性質

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

函數的應用

1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。

2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:

方程有實數根函數的圖象與軸有交點函數有零點。

3、函數零點的求法:

求函數的零點:

1(代數法)求方程的實數根;

2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點。

4、二次函數的零點:

二次函數。

1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點。

2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點。

3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。

1、 函數的奇偶性

(1)若f(x)是偶函數,那么f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

2、 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

(2)復合函數的單調性由“同增異減”判定;

3、函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;

4、函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5、方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

7、(1) (a>0,a≠1,b>0,n∈R+);

(2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣“同正異負”記憶;

(4) a log a N= N ( a>0,a≠1,N>0 );

8、 判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10、對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。

11、處理二次函數的問題勿忘數形結合;二次函數在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關系;

12、 依據單調性,利用一次函數在區間上的保號性可解決求一類參數的范圍問題

13、 恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

高中數學必修5知識點篇3

一)、培養良好的學習興趣。

兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?

1、課前預習,對所學知識產生疑問,產生好奇心。

2、聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

3、思考問題注意歸納,挖掘你學習的潛力。

4、聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?

5、把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、直角坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能對概念的理解切實可靠,在應用概念判斷、推理時會準確。

二)、建立良好的學習數學習慣。

習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。良好的學習數學習慣還包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

三)、有意識培養自己的各方面能力。

數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

高中數學必修5知識點篇4

立體幾何初步

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

高中數學必修5知識點篇5

先看筆記后做作業。有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

做題之后加強反思。學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網絡系統。

配合老師主動學習。高中學生學習主動性要強。小學生,常常是完成作業就盡情的歡樂。初中生基本也是如此,聽話的孩子就能學習好。高中則不然,作業雖多,但是只知道做作業就絕對不夠;老師的話也不少,但是誰該干些什么了,老師并不一一具體指明,因此,高中學生必須提高自己的學習主動性。準備向將來的大學生的學習方法過渡。

課內重視聽講,課后及時復習。新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。

特別要抓住基礎知識和基本技能的學習,課后要及時復 習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡。

建立良好的學習數學習慣。習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。

高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。適當多做題,養成良好的解題習慣。

高中數學必修5知識點篇6

了解現實世界和日常生活中的不等關系,了解不等式(組)的實際背景。

(2)一元二次不等式

會從實際情境中抽象出一元二次不等式模型。

通過函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯系。

會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖。

(3)二元一次不等式組與簡單線性規劃問題

會從實際情境中抽象出二元一次不等式組。

了解二元一次不等式的幾何意義,能用平面區域表示二元一次不等式組。

會從實際情境中抽象出一些簡單的二元線性規劃問題,并能加以解決。

(4)基本不等式:

了解基本不等式的證明過程。

會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

推薦訪問:知識點 必修 高中數學 高中數學必修5知識點總結 高中數學必修5知識點歸納 高中數學必修5知識點總結大全 高中數學必修5知識點歸納總結 高中數學必修知識點歸納 高中數學必修知識點全總結 高中數學必修知識點總結及公式大全 高中數學必修知識點公式 高中數學必修知識點思維導圖 高中數學必修知識點梳理

主站蜘蛛池模板: 太保市| 筠连县| 革吉县| 全南县| 莎车县| 五华县| 西充县| 六盘水市| 竹溪县| 剑阁县| 奉节县| 天祝| 河西区| 洞口县| 富宁县| 永寿县| 克拉玛依市| 平遥县| 肇州县| 滁州市| 朝阳市| 正蓝旗| 三河市| 花莲县| 万山特区| 塔河县| 法库县| 巴林左旗| 乌拉特前旗| 沾化县| 鄂托克旗| 阳朔县| 尼玛县| 安仁县| 天台县| 汽车| 万盛区| 祁门县| 武冈市| 水富县| 开原市|